
Double-Checking the Lists – Solution
By: Alex Walker

This puzzle bears a passing resemblance to an earlier puzzle, The Jousting Lists. Actually,
the only relevant difference between this puzzle and the former is that the square once marked
START now reads RESTART. Since we like following directions, let’s RESTART, now following a
different knight’s tour through the grid of cells:

Given RESTART Singularize GEMSTONE

First 4 letters REST Anagram without a T GENOMES

Anagram with W WREST Extract an interior letter GNOMES

Anagram odd-indexed letters WET Last 4 letters, any order SOME

Homophone WHET Change penult. letter to R SORE

Change letter #3 to I WHIT Insert a compass point abbr. SNORE

Caesar shift letter #2 by 10 WRIT Anagram with C CRONES

Append a letter WRITE Move letter #1 to home row DRONES

Homophone (same length) RIGHT Caesar shift letter #4 by 8 DROVES

Change letter #5 to a bigram RIGHTS Remove a letter other than #1 DOVES

5-letter homophone RITES Extract a ≥2-pt. Scrabble letter DOES

Anagram with D DRIEST Prepend 2 top row letters REDOES

Remove letter #6 DRIES Remove letters #2 and #3 ROES

Anagram without S DIRE Anagram with A AROSE

Extract a letter from N-Z DIE Extract the second vowel ARSE

Anagram with B BIDE Remove letter #3 ARE

Change letter #2 to 2 lettersa BRIDE Append a period 3 elem. sym. ARENA

[Previous] & . . . GROOM Caesar shift RIVER

Pluralize GROOMS Surround with 2 STEED letters DRIVERS

3-letter internal substring ROO Make penult. a home row key DRIVELS

Unshortened form KANGAROO Extract the letter after E DRIVES

Reverse 2-letter substring OR Extract last letter, A-Z order DRIES

Insert a vowel after vowel #1 OUR Anagram the 4 non-S letters RIDE

Make letter #2 a diff. vowel OAR Extract vowel #2 RID

Remove odd-indexed letters A Change center to EN REND

Advance 2 in flavortext GEMSTONES Extract letter #1 END

a. . . separated by a shift of 9 letters

This time, the eight ‘extracted’ letters spell the word REVOLVER.

Construction Notes: The idea to create a double feature in The Jousting Lists and Double-
Checking the Lists was inspired by the observation that the feeder answers CAROUSEL and
REVOLVER both had length 8 and a semantic connection to rotating things. The answer CAROUSEL
evokes horses moving around in a circle, which inspired the knight’s tour mechanic and the an-
nular shape of the grid.1

There are a few options for grids which approximate the shape of an annulus, but most of
the right size (e.g. between 30 and 60 cells) have no knight’s tours or have millions of them.
The selected grid has exactly two closed knight’s tours (i.e. knight’s tours in which the ending
cell is a knight’s move away from the starting cell). These tours can be found by looking for
Hamiltonian paths on the graph of legal knight moves on the ring. Empirically, the number of
knight’s tours is roughly dictated by the ‘thickness’ of the annular ring.

Puzzle construction took approximately ten weeks. One of the challenges with using different
knight’s tours for the two puzzles was that transformations used consecutively in one solution

1Meanwhile, REVOLVER is particularly cute as a callback answer – revolve traces back to Latin in the sense of
roll back / return / happen again.



could occur non-consecutively in the other path. This meant that large sections of the puzzle
had to be constructed simultaneously; in the end, construction proceeded in five phases:

12

7

48

51

8

17

50

11

6

47

18

13

10

49

52

5

14

9

16

3

46

1

19

28

41

4

30

15

2

45

27

20

29

42

35

40

31

26

23

36

39

44

21

32

37

24

43

34

25

22

33

38

38

35

46

51

34

45

50

37

4

47

44

39

36

49

52

5

40

33

42

3

48

1

43

28

15

6

32

41

2

17

27

22

29

16

7

14

31

26

23

10

13

18

21

30

11

24

19

8

25

20

9

12

Colors indicate the five stages of construction (in rainbow order), while numbers give the knight’s tour
ordering in The Jousting Lists (left) and Double-Checking the Lists (right). Each color represents a
series of transformations which form a consecutive block in both puzzles. For example, the orange
section represents transformation steps 33-45 in The Jousting Lists and steps 7-19 in the sequel.

As one imagines, creating a fill for this puzzle was incredibly challenging. After some ill-fated
attempts at designing fills by hand, I enlisted computer assistance to explore the search space.
In essence, one fixes a wordlist W (mine had around 86000 words) and defines a large family of
transformations T which map words w ∈W to subsets T (w) ⊂W ; for example

anagrams(silent) = {enlist, inlets, silent, tinsel};

anagrams(orange) = ∅.

To limit explosive branching during construction, transformations which return too many hits
can be overwritten to return no results instead. The final codebase included 273 transformation
rules. Each function was batch-computed and cached for efficiency.2

Given a sequence of transformations, we can compute (as a breadth-first search) every chain
of dictionary words which transforms according to the sequence. We do this for both puzzles
at once, often with additional constraints on the departure or destination wordlist. When this
fails, we test a different sequence of transformations. (Transformation sequences of length four
or five were typical.) We then test every possible sequence of transformations (of some fixed
length), and cross our fingers that at least one possibility gives success.

In practice, many sections were constructed by running this process in reverse, i.e. by fixing
a destination and applying ‘inverse’ operations in reverse order. For example, this technique
was used in the red section above to efficiently backtrack from the word END. To facilitate this
process, we essentially compute the inverse image of each w ∈W under each transformation T ;
specifically, we compute T−1(w) = {v ∈W ∣ w ∈ T (v)} for each T . Like the original transforms,
these ‘inverse transforms’ were batch-computed and cached.

Once enough transformations were added, a different problem emerged – there were too many
successes, and it was impossible to review them all manually. To fix this, all transforms were
assigned scores based on novelty. For example, the homophone transform was given a score of
10, while the transform ‘omit a substring of length 15’ was given a score of 1. Sequences of
transforms could then be scored and sorted based on their total novelty scores.3

2For example, to compute anagrams in bulk, one can sort the characters in each dictionary word alphabetically
as a hash, then gather on the hashes.

3To include options for more ‘semantic’ transforms, I also needed to create several databases of word trans-
formation rules, including a database of 2500 homophones, 550 X-and-Y phrases, 750 shortened/unshortened
word pairs, 8000 antonym pairs, and a large collection of words lying in well-known sequences, like {one, two,
three,. . . } or {snap, crackle, pop}.


